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Substance is a quasi-classical system in sense of Maslov cri-
terion. The interatomic potential is an algebraic function of
distance in the 5rst quasi-classical approximation, and molecular
or crystalline electronic structure is obtained by solving the
secular equation in which matrix elements are expressed by
volumes of intersections of the classically accessible areas for
electron states of atoms. The quasi-classical estimates of elec-
tron orbital energies and vibration frequencies for diatomic mol-
ecules B2, BC, BN, and BO are found. The band gap of 0.14 au
was established as a result of the quasi-classical calculations of
the density of states for h-BN layered crystal. ( 2000 Academic Press

The atomic potential ; (r) in general does not meet the
standard Wenzel}Kramers}Brillouin (WKB) quasi-classical
requirement on spatial smoothness, Ddl(r)/dr D@2n (l (r) is the
electron de Broglie wave length at the distance of r from the
center) (1), due to Coulomb singularity in the nucleus posi-
tion, as well as for electronic shell e!ects. However, begin-
ning from Bohr's fundamental work (2) up to nowadays the
semiclassical analysis of the electronic spectrum is widely
used for light atoms and their complexes (see, for instance,
(3,4)). Besides, substances can be treated within the local
density approximation by using the total energy functional
in the form of quasi-classical expansion (5).

Success of quasi-classical approaches is explained by the
di!usion of atomic potentials. The solution of the Riccaty-
type SchroK dinger equation is expressed by the series in
terms of powers of the parameter x"1/r

0
(2u

0
)1@2 (all rela-

tions are given in atomic units), where potential is written as
;(r)"u

0
F (r/r

0
) (the parameters u

0
and r

0
have the dimen-

sions of energy and distance respectively, whereas function
F is nondimensional), and the quasi-classical expression
for bounded states energies obtained by Maslov (6) yields
that precise and WKB spectra are close to one another
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independently from the potential smoothness properties if
x2@1 (7). The presence of electron exchange within the
atom determines its "nite sizes (8): the behavior of
the electron density n(r) in the asymptotic region r'R can
be correctly parameterized by the form n(r)"0, where R is
the certain "nite parameter (R(R) several times larger
than Bohr radius, RA1 (9). Consequently in this region
atomic potential practically equals 0, and in the region
04r4R it can be written as ; (r)"(Z/R)( f (r/R)/(r/R)).
Here Z is the atomic number, Z51, and f (r/R) is the
electron screening factor for the nuclear potential Z/r,
04f (r/R)41, f (0)"1, f (1)"0. This form indicates that
u
0
&Z/R and r

0
&R. Therefore, in the case of atomic

potential x2&1/2ZR@1, and both the atoms and poly-
atomic structures (molecules and crystals) are quasi-classi-
cal systems in sense of Maslov criterion.

On this basis the quasi-classical approach to the descrip-
tion of molecular and crystalline electronic structures has
been elaborated (10, 11).

Since the screening factor is an analytic function de"ned
on the "nite interval it can be approximated by the poly-
nomial. Using the quadratic approximation we obtain the
potential ;

i
(r) a!ecting the given ith electron,

;
i
(r)"1/r#(Z

i
!1)(1!r/R

i
)2/r, [1]

where Z
i

is the e!ective charge number of the screened
nucleus and R

i
is the e!ective radius of the charge cloud of

other electrons. By its substitution into the quantization
rule and further simpli"cation we get the classical turning
points radii,

r
i1
"n (n!(n2!l (l#1))1@2)/Z

i
,

r
i2
"n (n#(n2!l (l#1))1@2)/Z

i
. [2]
8



ELECTRONIC STRUCTURE OF BORON COMPOUNDS 149
Here n and l are the principal and orbital quantum numbers
respectively. The values of Z

i
and R

i
can be obtained by

"tting quasi-classical energetic levels E
i
and mean orbital

radii of electrons r6
i
,

E
i
"!Z2

i
/2n2#2(Z

i
!1)/R

i

!(1!1/Z
i
) (3n2!l(l#1))/2R2

i
, [3]

r6
i
"3n2(2n2!l(l#1))/(4n2!l(l#1))Z

i
, [4]

to the Hartree-Fock ones.
The semiclassical limit means truncation of electronic

state exponential tails in the classically forbidden regions. In
this case space-averaged orbital wave function t

i
(r) of the

ith electron equals 0 outside the classical turning points and
a nonzero constant within the range between them,

t
i
(r)"0 (0(r(r

i1
)

"(3/4n(r3
i2
!r3

i1
))1@2 (r

i1
(r(r

i2
)

"0 (r'r
i2
). [5]

The spherical layers r
i1
(r(r

i2
include corresponding

classical orbits.
The full atomic potential in general can be written in the

form

;(r)"
Z
+
i/1

u
i
(r)#Z/r";

i
(r)#u

i
(r), [6]

where u
i
(r) denotes the potential of the ith electron. Using

Eqs. [1] and [6] and the Poisson equation, the radial
dependencies of the full atomic potential ; (r) and atomic
charge density n (r) can be expressed by piecewise analytical
functions
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k
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k
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, k"0, 1, 2,2,Z), [7]

where R
0
"0 and R

Z`1
"R; ; (r)"0 and n(r)"0 for

r'R
Z
; A

k
, B

k
, and C

k
denote constants that depend on the

parameters Z, Z
i
, and R

i
; while d is a delta function.

According to Eq. [7] electron density drops at the points
r"R

k
, k51. Consequently n(r) and ; (r) may be

approximated by a step-like functions if substituted by the
space-averaged values inside each of the (R
k
, R

k`1
) regions,
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k
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k
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k
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k

(R
k
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, k"0, 1, 2,2 , S), [8]

where k stands for electronic subshells (and not electrons);
S is the total number of subshells in an atom; again R

0
"0,

R
S`1

"R; and ;
k
and n

k
denote known parameters.

The association of atoms into the molecular and crystal-
line structures somewhat modi"es the spatial distribution of
the valence electrons. The con"guration of atomic core
electrons practically does not change. Thus, initial molecu-
lar and crystalline potentials can be approximated by the
superposition of the atomic potentials. In the case of ex-
pressing atomic and consequently molecular or crystalline
potential in terms of step-like functions, where the linear
combinations of the piecewise-constant atomic orbitals are
chosen as the basis set, the molecular and crystalline elec-
tronic structures are determined by solving the secular
equation in which matrix elements are the linear combina-
tions of the overlapping volumes for every possible triad of
spheres with "nite radius of R

k
, r

k1
, or r

k2
centered at the

atomic sites.
Two main conclusions emerge from the above discussion.

First, the matrix elements contain a "nite number of sum-
mands without series termination. Secondly, one can regard
the task of nonzero terms calculation solved if the universal
function <"<(r

1
, r

2
, r

3
; D

12
,D

13
, D

23
) is known which

expresses the volume dependence of the three-sphere inter-
section region upon their radii r

1
, r

2
, r

3
and intercentral

distances D
12

, D
13

, D
23

. So, the proposed version of the
quasi-classical approach reduces the physical problem of
the molecular and crystalline electronic structures calcu-
lation to a geometrical one.

The volume < of the intersection region is expressed as
a continuous piecewise analytical combination of algebraic
and inverse trigonometric functions (the explicit solution
will be published as a separate paper),
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k
, [9]
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TABL
Quasi-classical Parameters of the Poten

Atom k n l Z
k
a R

k
(au) A

k
(au) !B

k
(

B 0 5 0 3.151 2.07
1 1 0 4.601 2.317 1.351 0.52
2 2 0 3.035 4.964 0.333 0.11
3 2 1 2.332 5.890

C 0 6 0 3.749 2.72
1 1 0 5.597 1.976 1.911 0.86
2 2 0 3.776 4.176 0.800 0.33
3 2 1 3.001 4.773

N 0 7 0 3.910 3.23
1 1 0 6.579 1.734 2.492 1.31
2 2 0 4.505 3.588 1.324 0.66
3 2 1 3.647 4.007

O 0 8 0 3.990 3.66
1 1 0 7.538 1.583 3.029 1.84
2 2 0 5.254 3.159 1.814 1.07
3 2 1 4.174 3.377
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(ijk)"(123), (321), (231). [19]

Now we can calculate the quasi-classical interatomic po-
tential P (d) as a function of internuclear distance d,

P(d)"
1

2 P drL (n@ (r);A( DrL!dK D )#nA( DrL!dK D );@(r)). [20]

In the previous and next equations single- and double-
primed symbols denote the "rst and second atoms respec-
tively. Using Eqs. [7] and [8], Eq. [20] gives
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+
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E 1
tial and Charge Distributions in Atoms

au) C
k
(au) ;

k
(au) !n

k
(au) r

k1
(au) r

k2
(au)

8 0.3864 0.6342 0.03982
3 0.0509 0.0332 0.00213 0 0.435
3 0.0096 0.0005 0.00028 0 2.636

0.502 2.928

8 0.5697 0.9622 0.06883
7 0.0988 0.0574 0.00490 0 0.357
5 0.0351 0.0009 0.00125 0 2.119

0.390 2.276

7 0.7643 1.140 0.1052
2 0.1732 0.085 0.0100 0 0.304
1 0.0824 0.001 0.0035 0 1.776

0.321 1.872

6 0.9464 1.238 0.1427
3 0.2807 0.102 0.0182 0 0.265
4 0.1590 0.001 0.0077 0 0.523

0.281 1.636



TABLE 2
Bond Orbital Energies in Diatomic Molecules

Molecule !e
1
(au) !e

2
(au) !e

3
(au) Method Reference

B
2

0.7079 0.2321 Theoretical This work
0.6776a 0.3412b Theoretical (12)
* 0.3495c Theoretical (12)

BC 0.9639 0.3531 Theoretical This work
* 0.386$0.039d Experimental (13)

BN 1.1636 0.4018 Theoretical This work

BO 1.3164 0.7453 0.4323 Theoretical This work
1.3038e 0.8855f 0.4960g Theoretical (14)
1.3535h 0.9674i 0.5387j Theoretical (14)
* * 0.496$0.050d Experimental (13)

a 2p
g
.

b 1n
u
.

c 2p
u
.

d Ionization potential.
e 0.428(sp0.71)

B
#0.904(sp1.17)

0
.

f (sp1.11)
0
.

g 0.481(p)
B
#0.877(p)

0
.

h 0.422(sp2.09)
B
#0.907(sp0.88)

0
.

i (sp0.84)
0
.

j 0.325(p)
B
.

FIG. 1. Quasi-classically calculated interatomic potentials for diatomic
molecules B

2
, BC, BN, and BO versus internuclear distances.

TABLE 3
Vibration Frequencies of Diatomic Molecules

Molecule w (10~3 au) Method Reference

B
2

4.80 Theoretical This work
4.7900 Experimental (13)

BC 6.03 Theoretical This work
5.194 Theoretical (15)

BN 6.54 Theoretical This work
6.9010 Experimental (13)

BO 9.17 Theoretical This work
8.59176 Experimental (13)
8.821 Theoretical (14)
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="=(R@, RA, D) is the universal algebraic function,

="0 (R@#RA4D))

"n (R@#RA!D)2((R@#RA#D)2

!4(R@2#RA2!R@RA))/12D ( DR@!RAD4D4R@#RA)

"4nR@3/3 (D4RA!R@)

"4nRA3/3 (D4R@!RA), [22]

which expresses the volume dependence of two spheres'
intersection region upon their radii R@ and RA, and intercen-
tral distance D. h is the step function. The integral has been
calculated for the step-like approximation except for the
terms with delta functions where piecewise analytical ex-
pression has been used for the potential.

The vibration frequency w can be determined by adjust-
ing the P (d) curve to the harmonic potential in the vicinity
of d"d

.*/
,

P (d)!P (d
.*/

)"Mw2(d!d
.*/

)2/2, [23]

where M is the reduced mass.
In the present work the elaborated quasi-classical method

is applied to some boron compounds. As it is known, this
class contains many important molecular compounds and
crystalline materials with extremely wide variations of elec-
tronic structure types. Namely, electron energy spectra and
vibration frequencies of B

2
, BC, BN, and BO diatomic

molecules have been studied, and also the density of states
(DOS) of h-BN crystal has been obtained.

Preliminarily we have calculated the requisited quasi-
classical parameters of the potential and charge distribu-
tions in the constituent atoms B, C, N, and O. The values
are presented in Table 1. For h-BN (r

32
)
B
#(r

32
)
N
"4.800

au(6.294 au"c/2 (c/2 is the distance between neighbor-
ing layers). Thus the quasi-classical B and N atomic orbitals
of di!erent layers do not overlap, and h-BN must be con-
sidered as a two-dimensional crystal. In a semiclassical
limit, the three-dimensional structure of the h-BN crystal
in#uences the electron spectrum only through the potential.

Energies e
1
, e

2
, and e

3
of the quasi-classically calculated

bond orbitals in diatomic molecules, as well as available
theoretical and experimental data, are listed in Table 2. One
can recognize that the expected errors of the quasi-classical
approach to the determination of low-lying valent states of
boron compounds make up a few percent.

The results from analyzing the obtained P(d) curves (Fig. 1),
together with some earlier data, are summarized in Table 3.

We have applied the valence orbital basis set (k"2, 3)
and obtained solutions for the secular equation for a mesh
of 7351 points in a quarter of the "rst Brillouin zone for
layered h-BN crystal. Calculated DOS N(E) with respect to
the Fermi level is presented in Fig. 2. The quasi-classical
approach reveals that h-BN is an insulator with band gap of



FIG. 2. Quasi-classically calculated DOS for layered h-BN crystal.
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E
'
"0.14 au. This value does not contradict the theoretical

and experimental data reported earlier (16), which lie over
wide ranges from 0.09 to 0.47 au and from 0.12 to 0.26 au
respectively. E

'
"0.14 au is somewhat less than the band

gap of 0.17 au obtained in (17) using the full-potential linear
augmented-plane-wave method, but it coincides with h-BN
electronic structure calculations that take into account in-
terlayer interaction (18). In outline our h-BN valence band
structure is similar to the DOS histograms calculated using
tight-binding approximation for hexagonal crystal layers
(19) and the orthogonalized-plane-wave method (20) modi-
"ed on the basis of X-ray experimental data (21).
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